FANDOM


Compton scattering
Feynman diagrams
s-channel
220px
u-channel
220px
Light-matter interaction
Low energy phenomena Photoelectric effect
Mid-energy phenomena Compton scattering
High energy phenomena Pair production

In physics, Compton scattering or the Compton effect is the decrease in energy (increase in wavelength) of an X-ray or gamma ray photon, when it interacts with matter. Inverse Compton scattering also exists, where the photon gains energy (decreasing in wavelength) upon interaction with matter. The amount the wavelength changes by is called the Compton shift. Although nuclear compton scattering exists[1], Compton scattering usually refers to the interaction involving only the electrons of an atom. The Compton effect was observed by Arthur Holly Compton in 1923 and further verified by his graduate student Y. H. Woo in the years following. Arthur Compton earned the 1927 Nobel Prize in Physics for the discovery.

The effect is important because it demonstrates that light cannot be explained purely as a wave phenomenon. Thomson scattering, the classical theory of an electromagnetic wave scattered by charged particles, cannot explain any shift in wavelength. Light must behave as if it consists of particles in order to explain the Compton scattering. Compton's experiment convinced physicists that light can behave as a stream of particles whose energy is proportional to the frequency.

The interaction between electrons and high energy photons(~keV) results in the electron being given part of the energy (making it recoil), and a photon containing the remaining energy being emitted in a different direction from the original, so that the overall momentum of the system is conserved. If the photon still has enough energy left, the process may be repeated. In this scenario, the electron is treated as free or loosely bound. Experimental verification of momentum conservation in individual Compton scattering processes by Bothe and Geiger as well as by Compton and Simon has been important in falsifying the BKS theory.

If the photon is of lower energy, but still has sufficient energy (in general a few eV, right around the energy of visible light), it can eject an electron from its host atom entirely (a process known as the Photoelectric effect), instead of undergoing Compton scattering. Higher energy photons(~MeV) may be able to bombard the nucleus and cause an electron and a positron to be formed, a process called pair production.

The Compton shift formulaEdit

File:Compton-scattering.svg

Template:See also Compton used a combination of three fundamental formulas representing the various aspects of classical and modern physics, combining them to describe the quantum behavior of light.

The final result gives us the Compton scattering equation:

\lambda' - \lambda = \frac{h}{m_e c}(1-\cos{\theta})

where

\lambda\, is the wavelength of the photon before scattering,
\lambda'\, is the wavelength of the photon after scattering,
m_e is the mass of the electron,
\theta\, is the angle by which the photon's heading changes,
h is Planck's constant, and
c is the speed of light in vaccum or not.
\frac{h}{m_e c} = 2.43 \times 10^{-12}\,m is known as the Compton wavelength.

DerivationEdit

Begin with conservation of energy and conservation of momentum:

E_\gamma + E_e = E_{\gamma^\prime} + E_{e^\prime} \quad \quad (1) \,
\vec p_\gamma = \vec{p}_{\gamma^\prime} + \vec{p}_{e^\prime} \quad \quad \quad \quad \quad (2) \,
where
E_\gamma \, and p_\gamma \, are the energy and momentum of the photon and
E_e \, and p_e \, are the energy and momentum of the electron.

Solving (Part 1)Edit

Now we fill in for the energy part:

E_{\gamma} + E_{e} = E_{\gamma'} + E_{e'}\,
hf + mc^2 = hf' + \sqrt{(p_{e'}c)^2 + (mc^2)^2}\,

The square of the second equation gives an equation for pe':

p_{e'}^2c^2 = (hf + mc^2-hf')^2-m^2c^4  \quad \quad \quad \quad \quad (3) \,

Solving (Part 2)Edit

Rearrange equation (2)

\vec{p}_{e'} = \vec{p}_\gamma - \vec{p}_{\gamma'} \,

and square it to see

p_{e'}^2 = (\vec{p}_\gamma - \vec{p}_{\gamma'}) \cdot (\vec{p}_\gamma - \vec{p}_{\gamma'})
p_{e'}^2 = p_{\gamma}^2 + p_{\gamma'}^2 - 2\vec{p_{\gamma}} \cdot \vec{p_{\gamma'}}
p_{e'}^2 = p_\gamma^2 + p_{\gamma'}^2 - 2|p_{\gamma}||p_{\gamma'}|\cos(\theta) \,

Energy and momentum of photons are connected by the relativistic equation p_{\gamma}=\frac{E_{\gamma}}{c}\,.

Therefore we have also

p_{e'}^2c^2 = (h f)^2 + (h f')^2 - 2(hf)(h f')\cos{\theta} \quad \quad \quad (4)

Putting it togetherEdit

Now we have the two equations (3 & 4) for p_{e'}^2c^2, which we equate:

 \left(h f\right)^2 + \left(h f'\right)^2 - 2h^2 ff'\cos{\theta} = (hf + mc^2-hf')^2 -m^2c^4 \,

Next we multiply out the right-hand term (hf + mc^2-hf')^2 and cancel square terms on both sides and get:

 -2h^2ff'\cos{\theta} = -2h^2ff'+2h(f-f')mc^2 .\,

Then divide both sides by '-2h' to see

hff'\cos{\theta} = hff'-(f-f')mc^2 \,
(f-f')mc^2 = hff'(1-\cos{\theta}) .\,

After dividing both sides by mc^2 and ff^\prime we get:

\frac{f-f^\prime}{f f^\prime} = \frac{h}{mc^2}\left(1-\cos \theta \right) . \,

The left-hand side can be rewritten as simply

 \frac{1}{f^\prime} - \frac{1}{f} = \frac{h}{mc^2}\left(1-\cos \theta \right) \,

This is equivalent to the Compton scattering equation, but it is usually written in terms of wavelength rather than frequency. To make that switch use

f=\frac{c}{\lambda} \,

so that finally,

\lambda'-\lambda = \frac{h}{mc}(1-\cos{\theta}) \,


ApplicationsEdit

Compton scattering Edit

Compton scattering is of prime importance to radiobiology, as it happens to be the most probable interaction of high energy X rays with atomic nuclei in living beings and is applied in radiation therapy.Edit

In material physics, Compton scattering can be used to probe the wave function of the electrons in matter in the momentum representation.Edit

Compton scattering is an important effect in gamma spectroscopy which gives rise to the Compton edge, as it is possible for the gamma rays to scatter out of the detectors used. Compton suppression is used to detect stray scatter gamma rays to counteract this effect. Edit

Inverse Compton scattering Edit

Inverse Compton scattering is important in astrophysics. In X-ray astronomy, the accretion disk surrounding a black hole is believed to produce a thermal spectrum. The lower energy photons produced from this spectrum are scattered to higher energies by relativistic electrons in the surrounding corona. This is believed to cause the power law component in the X-ray spectra (0.2-10 keV) of accreting black holes.Edit

The effect is also observed when photons from the cosmic microwave background move through the hot gas surrounding a galaxy cluster. The CMB photons are scattered to higher energies by the electrons in this gas, resulting in the Sunyaev-Zel'dovich effect.Edit

See alsoEdit

Template:QED

Notes Edit

Template:Reflist

Further reading Edit

External links Edit


Cite error: <ref> tags exist, but no <references/> tag was found

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.